
http://fun3d.larc.nasa.gov
FUN3D Training Workshop

March 24-25, 2014 1

Bob Biedron

FUN3D v12.4 Training

Session 12:
Suggar++ Basics

http://fun3d.larc.nasa.gov

Session Scope
•  What this will cover

–  Very rudimentary SUGGAR++ operation
•  What will not be covered

–  All the useful stuff that Ralph Noack would teach you
–  GVIZ (Ralph’s own viewer for overset grid assembly - useful for

debugging/assessing hole cutting)
•  What should you already be familiar with

–  Basic concept of overset meshes

FUN3D Training Workshop
March 24-25, 2014 2

http://fun3d.larc.nasa.gov

Introduction
•  Background

–  Use of overset grids in FUN3D requires SUGGAR++
•  Disclaimer: I am not a SUGGAR++ expert - just a user for limited

applications; this presentation may contain factual errors or other
misinformation

•  Compatibility
–  FUN3D requires both DiRTlib and SUGGAR++ codes from Celeritas

http://www.celeritassimtech.com
–  Grid formats: VGRID, AFLR3, FieldView (FV)

•  Status
–  Overset simulations done with FUN3D and SUGGAR++ on a

frequent basis, primarily for rotorcraft applications.

FUN3D Training Workshop
March 24-25, 2014 3

http://fun3d.larc.nasa.gov

SUGGAR++ Documentation
•  User’s Guide: doc/UsersGuide/UsersGuide.pdf

–  Documents list of input elements (the rules, not much of the “why”)
–  Documents command-line options for SUGGAR++

•  Programmer’s Guide: doc/ProgrammersGuide/ProgrammersGuide.pdf
–  Compilation
–  How to integrate libSUGGAR++ into a flow solver

•  Ralph Noack and Dave Boger provided training at the April 2010
FUN3D Training Session
–  Much of the material here is a distillation of the April 2010 slides - but

they had a full day to cover this

FUN3D Training Workshop
March 24-25, 2014 4

http://fun3d.larc.nasa.gov

Nomenclature (1/4)
•  SUGGAR++: Structured, Unstructured, Generalized overset Grid
AssembleR
–  PEGASUS-like capability for general grids
–  Stand-alone version plus library version to call within a flow solver

•  DiRTlib: Donor interpolation/Receptor Transaction library - used by flow
solver to handle data provided by SUGGAR++; no user input (just compile
and link to flow solver)

•  Component Grid
–  “Independently” generated grid for one piece of the configuration
–  Up to you to create these

•  Composite Grid
–  An assembly of component grids
–  Created by SUGGAR++ based on your input

FUN3D Training Workshop
March 24-25, 2014 5

http://fun3d.larc.nasa.gov

Nomenclature (2/4)
•  Overset grid point classification

–  In or Active: flow solver updates these points by solving the governing
equations at these locations

–  Out or Hole: flow solver need not update these points as they have been
removed from the domain
•  In practice, especially for moving grids, the flow solver fills in data at

these points by averaging neighboring points - done so that as points
move from “out” to “in”, they have “reasonable” data

–  Fringe: these points are updated by interpolation from “in” points; fringe
points border a hole (inner fringe) or lie along an outer boundary (outer
fringe)

–  Donor: the “in” points that supply data to fringe points
–  Orphan: fringe points for which too few or no donor points can be found;

undesirable; solver fills in data at these points by averaging solution at
neighboring points

FUN3D Training Workshop
March 24-25, 2014 6

http://fun3d.larc.nasa.gov

Nomenclature (3/4)
•  Flow solver point classification - example

FUN3D Training Workshop
March 24-25, 2014 7

Hole - Blue Dots

Outer Fringe - Red Dots

Inner Fringe - Black Dots

http://fun3d.larc.nasa.gov

Nomenclature (4/4)
•  DCI file

–  Domain Connectivity Information file
–  Created by SUGGAR++; contains information about point classifications

(hole, fringe, etc) for points in composite mesh, plus interpolation stencil
data

–  Calls to DiRTlib within FUN3D read the DCI file and utilize the data
within to update the solution at fringe points via interpolation from donor
points

–  If grid is static, only need one DCI file
–  If grid is dynamic, must either have pre-computed DCI files available for

the grid positions at each time step, or utilize libsuggar calls within
FUN3D to compute DCI data “on the fly” (separate presentation)

FUN3D Training Workshop
March 24-25, 2014 8

http://fun3d.larc.nasa.gov

XML Basics (1/2)
•  SUGGAR++ input is based on XML

–  eXtensible Markup Language (HTML-like, but not web centric)
–  XML element is enclosed in a tag “< >” , with corresponding end tag
<body> … </body> (start and end can also span multiple lines)

–  Elements can have attributes/data: <body name=“wing”>
–  Elements can have an implicit end tag; elements can be empty - no

attributes: <dynamic/>
–  XML elements can be embedded in other XML elements to create

parent-child relationships (wing and store are children of aircraft)
<body name=“aircraft”>

 <body name=“wing”>

 </body>

 <body name=“store”>

 </body>

</body>

FUN3D Training Workshop
March 24-25, 2014 9

http://fun3d.larc.nasa.gov

XML Basics (2/2)
•  Element attributes are name/value pairs associated with an element

–  Always in the start tag, value must be in quotes (single or double)
<body name=‘blade_1’> … </body>

<translate axis=“x” value=“1.0e0”/>
•  Comments start with <!-- and end with --> and cannot be within a tag
<!-- <body name=“aircraft”/> --> Correct
<body <!-- name=“aircraft” --> /> Incorrect

•  XML syntax must be precise: xmllint is on most(?) systems and can be
used to check XML syntax before using SUGGAR++
–  Usage: xmllint myfile.xml
–  If syntax is OK, will simply echo XML file to screen; otherwise it reports

the error
•  Indentation helps keep XML input readable; xmllint can help here too

–  Usage: xmllint -format my_messy_file.xml > my_neat_file.xml
 FUN3D Training Workshop

March 24-25, 2014 10

http://fun3d.larc.nasa.gov

Hole-Cutting: Hierarchy
•  Parent-Child hierarchy established in XML file minimizes additional input to

control hole cutting
•  Basic rule: siblings cut each other

–  Geometry in one body (including all children) cut all grids in a sibling
body (including all children); Aircraft cuts hole in Store and vice versa

FUN3D Training Workshop
March 24-25, 2014 11

ROOT
Aircraft Store

Wing Pylon Body

Fin1

Fin2

Fin3

Fin4

http://fun3d.larc.nasa.gov

Hole-Cutting: SUGGAR vs SUGGAR++
•  Older SUGGAR code relied (primarily) on Octree hole cutting - uses

Cartesian representation of geometry; hole cutting based on a query
approach: Is this point inside (the Cartesian representation of) the body?

FUN3D Training Workshop
March 24-25, 2014 12

•  In my experience, the Octree hole cutting approach often needs a lot of
tweaking beyond the default behavior

•  Newer SUGGAR++ code relies (primarily) on a direct hole cutting approach:
Find intersections of geometry and grid; requires watertight geometry

•  In my experience very little tweaking has been required with SUGGAR++
•  SUGGAR++ supports the older Octree approach too; other hole-cutting

options are available but are beyond the scope here
•  There are pros and cons to any approach…

http://fun3d.larc.nasa.gov

Hole Cutting: Overlap Minimization
•  Solution quality usually improved by reducing amount of overlap
•  Goal is to have donors and receptors of similar size
•  Enabled by element <minimize_overlap>
•  For moving grids: <minimize_overlap keep_inner_fringe=“yes”/>

–  Instead of blanking out points removed in overlap minimization, keeps
them as fringes so they are interpolated rather than averaged -
presumably better for when these points later emerge from the hole

FUN3D Training Workshop
March 24-25, 2014 13

http://fun3d.larc.nasa.gov

Building Up A SUGGAR++ Input File (1/9)
•  <global> element serves as the root (parent) element for every

SUGGAR++ input file: first line in file is <global> and last line is
</global>

•  Child elements of <global> specify various global parameters, and the
body hierarchy

•  So on a high level an input file for an aircraft composed of a wing and a
store would look something like:

FUN3D Training Workshop
March 24-25, 2014 14

<global>
 <!-- global parameters here -->
 <body name=“aircraft”>

 <body name=“wing”>
 <!-- wing parameters here -->
 </body>
 <body name=“store”>
 <!-- store parameters here -->
 </body>

 </body>

</global>

http://fun3d.larc.nasa.gov

Building Up A SUGGAR++ Input File (2/9)
•  Common child elements of <global> (see documentation for more info)

–  <donor_quality value="0.9”/> (lower stencil quality standard to
reduce number of orphans)

–  <minimize_overlap keep_inner_fringe=“yes”/>
–  <output> (governs output of composite mesh and DCI file)
–  Principal children of <output>

•  <composite_grid filename=“file” style=“style”/>
•  <domain_connectivity filename=“file” style=“style”/>

–  <composite_grid/> style attributes compatible with FUN3D:
•  “unsorted_vgrid_set”, “fvuns”, “aflr3”, “ugrid”
•  Note: “vgrid_set” is not valid output option for node-centered

grids (FUN3D is node centered)

FUN3D Training Workshop
March 24-25, 2014 15

http://fun3d.larc.nasa.gov

Building Up A SUGGAR++ Input File (3/9)
•  <body> element can be child of <global> or another <body>

–  Required attribute is name=“body_name”
•  Common child elements of <body> (see documentation for more info)

–  <volume_grid name=”wing” filename=“Grids/wing”
style=“vgrid_set”/> (associates a volume grid with a body)

–  <dynamic> (declares a body as moving; also determines how the
element <transform> is handled)

–  <transform> (to manipulate body: scale, rotate, translate, etc.)
•  If <transform> is child of <body>, transform is “static” - input

grid coordinates are actually altered by the transform specified
–  Use to move component grids into place for composite mesh

•  If <transform> is child of <dynamic>, transform is “dynamic” -
input grid coordinates are not altered by the transform; the transform
is only used internally to compute overset data

–  Use to specify grid motion from static position
FUN3D Training Workshop

March 24-25, 2014 16

http://fun3d.larc.nasa.gov

Building Up A SUGGAR++ Input File (4/9)
•  Subtle (important) effect of <dynamic> tag:

–  Flags the associated grid as dynamic in the DCI file
–  FUN3D will need this info up front for dynamic grid simulations

•  When setting up input file to generate composite mesh / initial DCI file:
–  Add a “self-terminating” <dynamic/> child to any body that will

subsequently be in motion:
 <body name="store">
 <dynamic/>
 <transform>
 <translate axis="x" value=" 7.6520E-01"/>
 </transform>
 </body>

–  Because the <dynamic/> element self terminates, <transform>
is not a child of it, and the usual static transform is applied to position
component “store” in the composite mesh

FUN3D Training Workshop
March 24-25, 2014 17

http://fun3d.larc.nasa.gov

Building Up A SUGGAR++ Input File (5/9)
•  Children of <transform>:

–  <translate>
–  <rotate> (used to rotate about x, y, or z)
–  <rotate_about_v> (used to rotate about arbitrary vector axis)
–  <scale>
 <body name="store">
 <dynamic/>
 <transform>
 <translate axis="x" value=" 7.6520E-01"/>
 </transform>
 </body>

–  The order of transforms is important; transforms applied in order
specified in the input file

•  Refer to documentation for complete rules about which elements are
allowed as children, which are allowed as parent, allowable attributes, etc.

FUN3D Training Workshop
March 24-25, 2014 18

http://fun3d.larc.nasa.gov

Building Up A SUGGAR++ Input File (6/9)
•  More complex example of <transform> from rotorcraft application

<body name="rotor1_blade2">
 <dynamic/>

 <transform>
 <translate axis="x" value=" 7.6520E-01"/>

 <translate axis="y" value=" 0.0000E+00"/>

 <translate axis="z" value=" 7.9600E-01"/>
 <rotate_about_v axis_vector="0.0E+00, 1.0E+00, 0.0E+00" value="0.0E+00”

originx="7.652E-01" originy="0.0E+00" originz ="7.96E-01"/>
 <rotate_about_v axis_vector="1.0E+00, 0.0E+00, 0.0E+00" value="0.0E+00"

originx="7.652E-01" originy="0.0E+00" originz ="7.96E-01"/>

 <rotate_about_v axis_vector="0.0E+00, 0.0E+00, 1.0E+00" value="0.0E+00"
originx="7.652E-01" originy="0.0E+00" originz ="7.96E-01"/>

 <rotate_about_v axis_vector="0.0E+00, -1.0E+00, 0.0E+00" value="0.0E+00"
originx="7.652E-01" originy="0.0E+00" originz ="7.96E-01"/>

 <rotate_about_v axis_vector="0.0E+00, 0.0E+00, 1.0E+00" value="9.0E+01"
originx="7.652E-01" originy="0.0E+00" originz ="7.96E-01"/>

 </transform>

 <volume_grid name="rotor_w_cutout_1_correct_pitch" style="vgrid_set"
filename="rotor_w_cutout_1_correct_pitch" format="unformatted"
precision="double">

 </volume_grid>
</body>

 FUN3D Training Workshop
March 24-25, 2014 19

http://fun3d.larc.nasa.gov

Building Up A SUGGAR++ Input File (7/9)
•  Boundary conditions

–  SUGGAR++ needs to know some boundary condition information, e.g.
which are the solid (body) boundaries, which outer boundaries need to
be interpolated from other grids
•  SUGGAR++ input has provision for specifying the required SUGGAR

++ BC’s via XML elements
•  An alternative is to provide SUGGAR++ with a separate file with the

BC data
–  I strongly recommend the first approach - set the BC’s via XML, since

the SUGGAR++ BC files are not required, and if you move things
around and forget the BC files, SUGGAR++ will run with defaults, likely
not what you want
•  One exception: if VGRID grids are used exclusively, SUGGAR++ will

use BC’s from VGRID’s mapbc file, which FUN3D will also require,
so you will always have consistent BC’s.

FUN3D Training Workshop
March 24-25, 2014 20

http://fun3d.larc.nasa.gov

Building Up A SUGGAR++ Input File (8/9)
•  SUGGAR++ needs BC info for each component grid
•  <boundary_condition> is a child of <boundary_surface> which is

a child of <volume_grid>
•  Examples (syntax for each grid type a little different)

–  AFLR grid
 <boundary_surface find="yes" name="Surf=2”> surface corresponds to

 <boundary_condition type=”overset”/> 2nd patch in grid file

 </boundary_surface>

–  FV grid
 <boundary_surface find="yes" name="airfoil_surface"> must be SAME name that

 <boundary_condition type="solid"/> is set in grid file

 </boundary_surface>

–  VGRID grid (shown completeness – generally don’t need)
 <boundary_surface find="yes" name="Surf=3:bc=4”> need surface/patch no.

 <boundary_condition type="solid”/> AND bc type

 </boundary_surface>

FUN3D Training Workshop
March 24-25, 2014 21

http://fun3d.larc.nasa.gov

Building Up A SUGGAR++ Input File (9/9)
•  Principal options for <boundary_condition type= >
-  “overlap”
-  “non-overlap”
-  “solid”
-  “non-solid”
-  “symmetry”
-  “farfield”
-  “freestream”
-  “periodic”
-  “axis”

•  2D Cases
–  Add as child of <global>
 <symmetry_plane axis="Y" both_directions="yes"/>
 <ignore_direction dir="Y"/>

FUN3D Training Workshop
March 24-25, 2014 22

http://fun3d.larc.nasa.gov

Running SUGGAR++: Static / T=0 (1/3)
•  Ralph recommends creating a “Grids” subdirectory and an “Input”

subdirectory for each case
–  I never do this however
–  By default SUGGAR will look to read Input/Input.xml, so if you don’t

have this you simply have to explicitly give the input file name
•  You will want to redirect stdout and stderr (stdout has LOTS of output);

below, file name Input.xml_0 is explicitly given
–  c-shell
 (./suggar++ Input.xml_0 > suggar++.output) > & suggar++.error

–  bourne-shell
 ./suggar++ Input.xml_0 1> suggar++.output 2> suggar++.error

–  Simpler trick: ./suggar++ -reopen Input.xml_0
•  stdout and stderr automatically go to out.stdout++ and
out.stderr++

FUN3D Training Workshop
March 24-25, 2014 23

http://fun3d.larc.nasa.gov

Running SUGGAR++: Static / T=0 (2/3)
•  Principal output: DCI and composite grid files specified in the XML file
•  A concise summary of SUGGAR++ info is written to summary.log

start time: Wed Jul 7 18:49:17 2010
host: i16n1
last git commit:
command line: ./suggar++ Input.xml_0
number of processors: 1
number of threads: 1
total number of out: 9657
total number of fringes: 166124
total number of min fringes: 145265
total number of orphans: 199
number of orphans due to poor quality donors: 199
wall clock to perform assembly (seconds): 4.98748
memory used (MB): 1018.83
max interpolation deviation: 7.32747e-15
fringe donor quality: 0.904761
min fringe donor quality: 1

FUN3D Training Workshop
March 24-25, 2014 24

http://fun3d.larc.nasa.gov

Running SUGGAR++: Static / T=0 (3/3)
•  SUGGAR++ can use multiple threads

–  Via command line –n_threads N (for N threads)
–  Via input element <threads n=“N”/>
–  Never found this particularly worthwhile (YMMV)

•  SUGGAR++ can be run in parallel
–  So far scaling achieved has been fairly poor - nowhere near linear,

even for small (~8) processor counts
–  Requires a separate partitioning step, which is at odds with current

FUN3D parallel-processing paradigm; “optimum” SUGGAR++
partitioning bears no resemblance to optimal flow solver partitioning

–  For these reasons, there has been minimal incentive to utilize the
parallel capability for SUGGAR++ processing

–  Hopefully SUGGAR++ parallel scaling will improve in the future

FUN3D Training Workshop
March 24-25, 2014 25

http://fun3d.larc.nasa.gov

Running SUGGAR++ : Moving Grid (1/3)
•  For FUN3D applications involving moving grids, SUGGAR++ must be

run at least one time, to create the composite mesh and initial (T=0)
DCI file
–  FUN3D can call SUGGAR++ routines to compute the DCI data for

each time step after T=0, “on the fly”
•  Works for the most general case involving deforming bodies/grids

or where motion is not known a priori (6DOF/aeroelastic)
•  Creates a serial bottleneck in FUN3D execution, but is the easiest

option to use
•  More details in “Overset-Grid Simulations” Session

•  For rigid grids with prescribed motion can run SUGGAR++ with a
“motion file”
–  Can be done “embarrassingly parallel” – simultaneous runs with

different motion files
–  Potentially can use SUGGAR++ in parallel mode as well

FUN3D Training Workshop
March 24-25, 2014 26

http://fun3d.larc.nasa.gov

Running SUGGAR++ : Moving Grid (2/3)
•  To run SUGGAR++ with a motion file called (e.g.) “motion.xml”:

–  (./suggar++ Input.xml_0 -play_motion motion.xml >
suggar++.output) > & suggar++.error
•  Input.xml_0 is the same xml file used to create the composite

grid and static / T=0 DCI file
•  Motion file:

–  Each time step is contained in a complete <global> element
–  Typical motion file will have multiple time steps
–  Output specification of DCI file for the time step should be placed

before and <body> specifications
–  Up to the user to make sure the specified motion is the same as that

which will later be applied by FUN3D during execution
–  Should include one “motion” step with no motion if you want to

generate the static / T=0 dci file in the same execution of SUGGAR++

FUN3D Training Workshop
March 24-25, 2014 27

http://fun3d.larc.nasa.gov

Running SUGGAR++ : Moving Grid (3/3)
•  Simple example of motion file with 2 time steps: T= 0 and T=deltaT

<global>
 <output>
 <!–-- This is to generate the T=0 dci file note: no number after [project] name -
 <domain_connectivity style="ascii_gen_drt_pairs" filename="./wingstore.dci"/>
 </output>
 <body name="wingstore">
 <body name="wing">
 </body>
 <body name="store">
 <dynamic>
 <transform>
 <translate axis="z" value=" 0.000000000000E-00"/>
 </transform>
 </dynamic>
 </body>
 </body>
</global>

<global>
 <output>
 <!–-- This is to generate the T=delta_t dci file (timestep1) -
 <domain_connectivity style="ascii_gen_drt_pairs" filename="./wingstore1.dci"/>
 </output>
 <body name="wingstore">
 <body name="wing">
 </body>
 <body name="store">
 <dynamic>
 <transform>
 <translate axis="z" value=" -2.120800000000E-01"/>
 </transform>
 </dynamic>
 </body>
 </body>
</global>

FUN3D Training Workshop

March 24-25, 2014 28

http://fun3d.larc.nasa.gov

GVIZ
•  Ralph has a “home-brew” interactive visualizer for looking at the overset

grid assembly, called GVIZ
–  Allows visualization of the meshes, hole points, fringe points, etc.
–  Can be useful for debugging
–  I don’t have enough skill with GVIZ to even begin to explain how to

use it

FUN3D Training Workshop
March 24-25, 2014 29

http://fun3d.larc.nasa.gov

Troubleshooting
•  Lots of orphans could mean:

–  Improper BC’s
–  Non watertight geometry (default direct hole cutting requires

watertight surfaces) – likely if virtually all points end up as hole
points

FUN3D Training Workshop
March 24-25, 2014 30

http://fun3d.larc.nasa.gov

List of Key Input/Output Files
•  Input

–  Input/Input.xml (default; any name OK if explicitly specified)
–  Motion file (any name OK, used with -play_motion)
–  Component grids (name and grid format vary; for FUN3D: VGRID,

AFLR3, Fieldview formats)
•  Output

–  Composite grid; name and grid format vary
–  filename.dci (filename set in XML file)
–  summary.log concise summary by point type (out, fringe, orphan…)
–  SUGGAR++_motion.log (if -play_motion) echo of motion file

FUN3D Training Workshop
March 24-25, 2014 31

